organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1',2,2'-Tetramethyl-3,3'-(p-phenylenedimethylene)diimidazol-1-ium bis[bis(trifluoromethylsulfonyl)imide]

Munirah Sufiyah Abdul Rahim, Yatimah Alias and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 9 September 2010; accepted 22 September 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.092; data-to-parameter ratio = 15.8.

The cation of the imidazolium-based ionic-liquid title salt, $C_{16}H_{24}N_4^{2+} \cdot 2C_2F_6NO_4S_2^{-}$, lies on a center of inversion; in the cation, the five-membered imidazolium ring is aligned at 84.4 (1) $^{\circ}$ with respect to the phenylene ring; the angle at the methylene C atom is $113.0 (2)^{\circ}$. In the anion, the negative charge formally resides on the two-coordinate N atom; the S-N-S angle at this atom is $125.2 (1)^{\circ}$.

Related literature

For the tetrafluoroborate and hexafluorophosphate salts, see: Puvaneswary et al. (2009a,b).

Experimental

Crystal data

 $C_{16}H_{24}N_4^{2+} \cdot 2C_2F_6NO_4S_2^{-1}$ V = 1652.6 (2) Å³ $M_r = 856.71$ Z = 2Monoclinic, $P2_1/n$ a = 8.7195 (7) Å b = 13.710 (1) Å T = 100 Kc = 13.8351 (11) Å $\beta = 92.290(1)^{\circ}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.853, T_{\max} = 0.922$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.092$ S = 1.023744 reflections

Mo $K\alpha$ radiation $\mu = 0.41 \text{ mm}^ 0.40 \times 0.30 \times 0.20 \text{ mm}$

10192 measured reflections 3744 independent reflections 3191 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$

237 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the University of Malaya (grant No. TA010/ 2010 A) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2208).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Puvaneswary, S., Alias, Y. & Ng, S. W. (2009a). Acta Cryst. E65, o1829.

Puvaneswary, S., Alias, Y. & Ng, S. W. (2009b). Acta Cryst. E65, o1830.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, o2668 [doi:10.1107/S1600536810038006]

1,1',2,2'-Tetramethyl-3,3'-(*p*-phenylenedimethylene)diimidazol-1-ium bis[bis(trifluoromethylsulfonyl)imide]

M. S. Abdul Rahim, Y. Alias and S. W. Ng

Comment

We have previously reported 1,1',2,2'-tetramethyl-3,3'-(*p*-phenylenedimethylene)-bis(imidazol-1-ium) salts (Puvaneswary *et al.*, 2009*a*, 2009*b*). Such compounds are ionic-liquid salts based on an imidazolium entity. The principal feauture of these salts is the non-nucleophilic nature of the counterion. The present bis(trifluoromethanesulfonyl)imide salt (Scheme I, Fig. 1) represents another example of such an anion. The cation lies on a center-of-inversion. The five-membered limidazolyl ring is aligned at with respect to the phenylene ring 84.4 (1) °; the angle at the methylene carbon is 113.0 (2) °. In the anion, the negative charge formally resides on the two-coordinate nitrogen; the angle at this atom is 125.2 (1) °.

Experimental

1,1',2,2'-Tetramethyl-3,3'-(*p*-phenylenedimethylene)-bis(imidazol-1-ium) bromide (1 mmol) and lithium bis(trifluoromethanesulfonyl)imide (2 mmol) were mixed in water for 2 h to give a solid material. This was collected and recrystallized from ethyl acetate

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{16}H_{24}N_4^{2+} 2C_2F_6NO_4S_2^-$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.

1,1',2,2'-Tetramethyl-3,3'-(p-phenylenedimethylene)diimidazol-1-ium bis[bis(trifluoromethylsulfonyl)imide]

Crystal data $C_{16}H_{24}N_4^{2+} \cdot 2C_2F_6NO_4S_2^{-1}$ $M_r = 856.71$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.7195 (7) Å

F(000) = 868 $D_x = 1.722 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4645 reflections $\theta = 2.7-28.4^{\circ}$ b = 13.710 (1) Å c = 13.8351 (11) Å $\beta = 92.290 (1)^{\circ}$ $V = 1652.6 (2) \text{ Å}^{3}$ Z = 2

Data collection

$\mu = 0.41 \text{ mm}^{-1}$
T = 100 K
Block, colorless
$0.40 \times 0.30 \times 0.20 \text{ mm}$

Bruker SMART APEX diffractometer	3744 independent reflections
Radiation source: fine-focus sealed tube	3191 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.853, T_{\max} = 0.922$	$k = -14 \rightarrow 17$
10192 measured reflections	$l = -15 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.092$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.042P)^{2} + 1.3932P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3744 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
237 parameters	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.67739 (5)	0.67845 (3)	0.91285 (3)	0.01904 (12)
S2	0.38200 (5)	0.75917 (3)	0.90601 (3)	0.01821 (12)
F1	0.71875 (14)	0.85090 (8)	0.83605 (9)	0.0308 (3)
F2	0.76447 (14)	0.73079 (9)	0.74157 (8)	0.0300 (3)
F3	0.92506 (13)	0.76619 (10)	0.85879 (10)	0.0390 (3)
F4	0.21558 (15)	0.60557 (10)	0.94569 (9)	0.0361 (3)
F5	0.15962 (13)	0.73471 (9)	1.02456 (9)	0.0308 (3)
F6	0.36490 (15)	0.65461 (10)	1.06344 (8)	0.0347 (3)
O1	0.73759 (16)	0.58470 (11)	0.89041 (11)	0.0289 (3)
O2	0.70581 (15)	0.71643 (11)	1.00822 (10)	0.0272 (3)
O3	0.27597 (15)	0.77674 (11)	0.82658 (10)	0.0277 (3)
O4	0.43736 (15)	0.83923 (10)	0.96315 (10)	0.0267 (3)
N1	0.09231 (18)	0.48286 (12)	0.77903 (11)	0.0211 (3)

N2	0.23507 (18)	0.57396 (12)	0.69354 (11)	0.0208 (3)
N3	0.50715 (17)	0.68460 (12)	0.87134 (11)	0.0196 (3)
C1	0.4064 (2)	0.45239 (15)	0.43276 (13)	0.0215 (4)
H1	0.3417	0.4197	0.3863	0.026*
C2	0.3415 (2)	0.50636 (15)	0.50513 (13)	0.0219 (4)
H2	0.2331	0.5103	0.5084	0.026*
C3	0.4355 (2)	0.55475 (13)	0.57304 (12)	0.0170 (4)
C4	0.3691 (2)	0.61775 (14)	0.65040 (13)	0.0210 (4)
H4A	0.4490	0.6297	0.7019	0.025*
H4B	0.3394	0.6816	0.6219	0.025*
C5	0.0846 (2)	0.60245 (16)	0.67350 (14)	0.0261 (4)
H5	0.0510	0.6527	0.6304	0.031*
C6	-0.0041 (2)	0.54552 (15)	0.72652 (14)	0.0254 (4)
H6	-0.1128	0.5476	0.7279	0.030*
C7	0.0391 (2)	0.41044 (15)	0.84840 (14)	0.0242 (4)
H7A	0.1006	0.4157	0.9090	0.036*
H7B	0.0503	0.3448	0.8215	0.036*
H7C	-0.0690	0.4225	0.8610	0.036*
C8	0.2373 (2)	0.50107 (14)	0.75707 (12)	0.0189 (4)
C9	0.3763 (2)	0.45077 (15)	0.79565 (14)	0.0239 (4)
H9A	0.4512	0.4992	0.8198	0.036*
H9B	0.4210	0.4123	0.7441	0.036*
H9C	0.3491	0.4075	0.8487	0.036*
C10	0.7775 (2)	0.76175 (15)	0.83281 (14)	0.0234 (4)
C11	0.2749 (2)	0.68402 (15)	0.98983 (13)	0.0221 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0194 (2)	0.0187 (2)	0.0188 (2)	0.00166 (17)	-0.00064 (16)	0.00181 (17)
S2	0.0183 (2)	0.0185 (2)	0.0177 (2)	0.00097 (16)	-0.00023 (16)	0.00068 (17)
F1	0.0373 (7)	0.0179 (6)	0.0371 (7)	-0.0019 (5)	0.0017 (5)	0.0018 (5)
F2	0.0377 (6)	0.0311 (7)	0.0217 (6)	0.0021 (5)	0.0066 (5)	0.0019 (5)
F3	0.0198 (6)	0.0477 (9)	0.0490 (8)	-0.0072 (5)	-0.0028 (5)	0.0098 (7)
F4	0.0461 (7)	0.0298 (7)	0.0333 (7)	-0.0163 (6)	0.0131 (6)	-0.0077 (5)
F5	0.0296 (6)	0.0330 (7)	0.0306 (6)	0.0035 (5)	0.0110 (5)	-0.0009 (5)
F6	0.0389 (7)	0.0432 (8)	0.0219 (6)	0.0053 (6)	0.0003 (5)	0.0123 (5)
01	0.0295 (7)	0.0210 (8)	0.0368 (8)	0.0062 (6)	0.0062 (6)	0.0035 (6)
O2	0.0270 (7)	0.0349 (9)	0.0192 (7)	0.0015 (6)	-0.0063 (5)	0.0005 (6)
O3	0.0225 (7)	0.0388 (9)	0.0217 (7)	0.0031 (6)	-0.0024 (5)	0.0091 (6)
O4	0.0260 (7)	0.0191 (7)	0.0349 (8)	-0.0001 (5)	0.0008 (6)	-0.0069 (6)
N1	0.0235 (7)	0.0208 (9)	0.0191 (7)	0.0020 (6)	0.0017 (6)	-0.0006 (6)
N2	0.0248 (8)	0.0203 (9)	0.0173 (7)	0.0009 (6)	0.0026 (6)	0.0001 (6)
N3	0.0191 (7)	0.0207 (9)	0.0189 (7)	-0.0003 (6)	-0.0011 (6)	-0.0047 (6)
C1	0.0241 (9)	0.0226 (10)	0.0177 (8)	-0.0064 (7)	-0.0024 (7)	-0.0027 (7)
C2	0.0194 (8)	0.0249 (10)	0.0214 (9)	-0.0030 (7)	0.0007 (7)	-0.0015 (8)
C3	0.0232 (8)	0.0146 (9)	0.0133 (8)	-0.0031 (7)	0.0015 (6)	0.0026 (6)
C4	0.0275 (9)	0.0180 (10)	0.0177 (8)	-0.0016 (7)	0.0038 (7)	0.0004 (7)

supplementary materials

C5	0.0282 (10)	0.0263 (11)	0.0237 (9)	0.0080 (8)	-0.0012 (8)	0.0038 (8)
C6	0.0219 (9)	0.0259 (11)	0.0281 (10)	0.0074 (8)	-0.0027 (7)	-0.0009 (8)
C7	0.0272 (9)	0.0231 (11)	0.0225 (9)	-0.0008 (8)	0.0046 (7)	0.0051 (8)
C8	0.0258 (9)	0.0172 (9)	0.0138 (8)	0.0013 (7)	0.0009 (6)	-0.0014 (7)
C9	0.0218 (9)	0.0235 (10)	0.0260 (10)	0.0039 (7)	-0.0035 (7)	-0.0013 (8)
C10	0.0210 (9)	0.0241 (11)	0.0251 (9)	-0.0002 (7)	0.0001 (7)	0.0030 (8)
C11	0.0249 (9)	0.0234 (10)	0.0182 (9)	-0.0004 (7)	0.0020 (7)	-0.0006 (7)
Geometric paran	neters (Å, °)					
S1—O1		1.4273 (15)	C1—C	2	1.384	4 (3)
S1—O2		1.4308 (14)	C1—C	3 ⁱ	1.38	7 (2)
S1—N3		1.5724 (15)	С1—Н	1	0.95	00
S1—C10		1.836 (2)	С2—С	3	1.39	0 (3)
S2—O4		1.4255 (14)	С2—Н	2	0.95	00
S2—O3		1.4280 (14)	С3—С	1 ⁱ	1.38	7 (2)
S2—N3		1.5837 (16)	С3—С	4	1.50	9 (2)
S2—C11		1.835 (2)	С4—Н	4A	0.99	00
F1-C10		1.327 (2)	С4—Н	4B	0.99	00
F2—C10		1.332 (2)	С5—С	6	1.33	8 (3)
F3—C10		1.323 (2)	С5—Н	5	0.95	00
F4—C11		1.331 (2)	С6—Н	6	0.95	00
F5—C11		1.327 (2)	С7—Н	7A	0.98	00
F6—C11		1.324 (2)	С7—Н	7B	0.98	00
N1—C8		1.335 (2)	С7—Н	7C	0.98	00
N1—C6		1.387 (2)	C8—C	9	1.47	6 (3)
N1—C7		1.469 (2)	С9—Н	9A	0.98	00
N2—C8		1.330 (2)	С9—Н	9B	0.98	00
N2—C5		1.386 (2)	С9—Н	9C	0.98	00
N2C4		1.462 (2)				
O1—S1—O2		118.48 (9)	C6—C	5—N2	106.	80 (17)
O1—S1—N3		108.59 (9)	C6—C	5—H5	126.	6
O2—S1—N3		116.33 (8)	N2—C	5—H5	126.	6
O1—S1—C10		103.95 (9)	С5—С	6—N1	107.2	28 (17)
O2—S1—C10		105.12 (9)	С5—С	6—H6	126.4	4
N3—S1—C10		102.19 (9)	N1—C	6—H6	126.4	4
O4—S2—O3		119.43 (9)	N1—C	7—H7A	109.:	5
O4—S2—N3		116.29 (8)	N1—C	7—H7B	109.:	5
O3—S2—N3		107.98 (8)	H7A—	-С7—Н7В	109.:	5
O4—S2—C11		104.56 (9)	N1—C	7—Н7С	109.:	5
O3—S2—C11		104.53 (9)	H7A—	-С7—Н7С	109.:	5
N3—S2—C11		101.73 (9)	H7B—	С7—Н7С	109.:	5
C8—N1—C6		108.92 (16)	N2—C	8—N1	107.:	58 (16)
C8—N1—C7		126.98 (16)	N2—C	8—C9	125.4	43 (17)
C6—N1—C7		124.10 (16)	N1—C	8—C9	126.	99 (17) -
C8—N2—C5		109.41 (16)	C8—C	9—H9A	109.:	5
C8—N2—C4		125.98 (16)	C8—C	9—H9B	109.:	5
C5—N2—C4		124.60 (16)	H9A—	-С9—Н9В	109.:	5

S1—N3—S2	125.16 (10)	С8—С9—Н9С	109.5
C2—C1—C3 ⁱ	121.01 (17)	Н9А—С9—Н9С	109.5
C2—C1—H1	119.5	Н9В—С9—Н9С	109.5
C3 ⁱ —C1—H1	119.5	F3—C10—F1	108.73 (17)
C1—C2—C3	119.81 (17)	F3—C10—F2	108.50 (16)
C1—C2—H2	120.1	F1—C10—F2	107.88 (16)
С3—С2—Н2	120.1	F3—C10—S1	110.21 (13)
C1 ⁱ —C3—C2	119.18 (17)	F1—C10—S1	111.04 (13)
C1 ⁱ —C3—C4	119.47 (16)	F2-C10-S1	110.41 (14)
C2—C3—C4	121.31 (16)	F6—C11—F5	108.38 (15)
N2-C4-C3	112.97 (15)	F6—C11—F4	108.32 (17)
N2—C4—H4A	109.0	F5—C11—F4	107.65 (15)
C3—C4—H4A	109.0	F6—C11—S2	110.87 (13)
N2—C4—H4B	109.0	F5—C11—S2	110.29 (13)
C3—C4—H4B	109.0	F4—C11—S2	111.22 (12)
H4A—C4—H4B	107.8		
O1—S1—N3—S2	159.88 (11)	C6—N1—C8—N2	0.8 (2)
O2—S1—N3—S2	23.18 (16)	C7—N1—C8—N2	-178.01 (17)
C10—S1—N3—S2	-90.68 (13)	C6—N1—C8—C9	-179.42 (18)
O4—S2—N3—S1	14.34 (16)	C7—N1—C8—C9	1.7 (3)
O3—S2—N3—S1	151.77 (12)	O1—S1—C10—F3	-67.76 (16)
C11—S2—N3—S1	-98.55 (13)	O2—S1—C10—F3	57.41 (16)
C3 ⁱ —C1—C2—C3	0.3 (3)	N3—S1—C10—F3	179.31 (14)
C1—C2—C3—C1 ⁱ	-0.3 (3)	O1—S1—C10—F1	171.70 (13)
C1—C2—C3—C4	177.36 (17)	O2—S1—C10—F1	-63.13 (15)
C8—N2—C4—C3	75.5 (2)	N3—S1—C10—F1	58.76 (15)
C5—N2—C4—C3	-104.1 (2)	O1—S1—C10—F2	52.09 (15)
C1 ⁱ —C3—C4—N2	-140.06 (17)	O2—S1—C10—F2	177.26 (13)
C2—C3—C4—N2	42.3 (2)	N3—S1—C10—F2	-60.84 (15)
C8—N2—C5—C6	0.2 (2)	O4—S2—C11—F6	-59.50 (15)
C4—N2—C5—C6	179.92 (17)	O3—S2—C11—F6	174.21 (13)
N2-C5-C6-N1	0.3 (2)	N3—S2—C11—F6	61.92 (15)
C8—N1—C6—C5	-0.7 (2)	O4—S2—C11—F5	60.54 (15)
C7—N1—C6—C5	178.19 (18)	O3—S2—C11—F5	-65.75 (15)
C5—N2—C8—N1	-0.7 (2)	N3—S2—C11—F5	-178.04 (13)
C4—N2—C8—N1	179.66 (16)	O4—S2—C11—F4	179.90 (13)
C5—N2—C8—C9	179.58 (18)	O3—S2—C11—F4	53.62 (16)
C4—N2—C8—C9	-0.1 (3)	N3—S2—C11—F4	-58.68 (15)

Symmetry codes: (i) -x+1, -y+1, -z+1.

Fig. 1